Gravitational Wave Background from a Cosmological Population of Core-Collapse Supernovae

نویسندگان

  • Valeria Ferrari
  • Sabino Matarrese
  • Raffaella Schneider
چکیده

We analyse the stochastic background of gravitational radiation emitted by a cosmological population of core-collapse supernovae. The supernova rate as a function of redshift is deduced from an observation-based determination of the star formation rate density evolution. We then restrict our analysis to the range of progenitor masses leading to black hole collapse. In this case, the main features of the gravitational-wave emission spectra have been shown to be, to some extent, independent of the initial conditions and of the equation of state of the collapsing star, and to depend only on the black hole mass and angular momentum. We calculate the overall signal produced by the ensemble of black-hole collapses throughout the Universe, assuming a flat cosmology with vanishing cosmological constant. Within a wide range of parameter values, we find that the spectral strain amplitude has a maximum at a few hundred Hz with an amplitude between 10 and 10 Hz; the corresponding closure density, ΩGW , has a maximum amplitude ranging between 10 −11 and 10 in the frequency interval ∼ 1.5 − 2.5 kHz. Contrary to previous claims, our observation-based determination leads to a duty cycle of order 0.01, making our stochastic backgound a non-continuous one. Although the amplitude of our background is comparable to the sensitivity that can be reached by a pair of advanced LIGO detectors, the characteristic shot-noise structure of the predicted signal might be in principle exploited to design specific detection strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosmological Gravitational Wave Background from Phase Transitions in Neutron Stars

It has recently been suggested that collapse of neutron stars induced by a phase transition to quark matter can be a considerable source of gravitational waves with kHz frequencies. We demonstrate that if about one percent of all neutron stars undergo this process, the resulting cosmological gravitational wave background would reach about 10 times the critical density. The background would peak...

متن کامل

First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proxim...

متن کامل

Gravitational Waves from a Cosmological Distribution of Sources

The advent of gravitational wave detectors such as the Laser Interferometer Space Antenna and the Advanced-Laser Interferometer Gravitational wave Observatory will make it possible to observe many gravitational wave emission phenomena that may or may not have electromagnetic counterparts. In many cases, gravitational waves serve as probes of length and time scales that range many orders of magn...

متن کامل

Gravitational Wave Emission From Core-Collapse of Massive Stars

We derive estimates for the characteristics of gravitational radiation from stellar collapse, using recent models of the core-collapse of Chandrasekhar mass white dwarfs (accretion induced collapse), core-collapse supernovae and collapsars, and the collapse of very massive stars (∼> 300M⊙). We study gravitational-wave emission mechanisms using several estimation techniques, including two-dimens...

متن کامل

A new mechanism for gravitational-wave emission in core-collapse supernovae.

We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998